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a b s t r a c t

In this study, micellar-enhanced ultrafiltration (MEUF) was applied to remove zinc ions from wastewater
efficiently. Frequently, experimental design and artificial neural networks (ANNs) have been successfully
used in membrane filtration process in recent years. In the present work, prediction of the permeate flux
and rejection of metal ions by MEUF was tested, using design of experiment (DOE) and ANN models. In
vailable online 8 December 2010

eywords:
icellar-enhanced ultrafiltration (MEUF)

rtificial neural network (ANN)

order to reach the goal of determining all the influential factors and their mutual effect on the overall
performance the fractional factorial design has been used. The results show that due to the complexity in
generalization of the MEUF process by any mathematical model, the neural network proves to be a very
promising method in compared with fractional factorial design for the purpose of process simulation.
These mathematical models are found to be reliable and predictive tools with an excellent accuracy,

±0.22
y.
ractional factorial design
inc

because their AARE was
and rejection, respectivel

. Introduction

The discharge of organic and metal pollutants into the environ-
ent is a serious problem due to its impact on human health and

atural environment [1]. These pollutants are highly toxic, non-
iodegradable and probably have a carcinogenic effect. Aqueous
treams containing heavy metals are frequently encountered in
ndustrial effluents and the sources of Cu2+, Pb2+, Zn2+ and Cd2+

re very common in the electroplating facilities, electrolytic refin-
ng plants, semi-conductor manufacturing and acid mine waters,
mong others [2].

An increasing demand for fresh water along with the larger

mounts of wastewater generation due to increase in the world
opulation and development of industrial applications, makes the
ecycling of the wastewaters an imperative issue [3]. For many
ears, many technologies such as precipitation, solvent extraction,

Abbreviations: ANN, Artificial neural network; ARE, Average relative error; AARE,
bsolute average relative error; SD, Standard deviation; MEUF, Micellar-enhanced
ltrafiltration; CMC, Critical micellar concentration; 2FI’s, Two-factor interactions;
NOVA, Analysis of the variance; RSM, Response surface methodology; TMP, Trans-
embrane pressure (bar).
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9%, ±0.017%, in comparison with experimental values for permeate flux
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zeolite and activated carbon adsorption, crystallization, evapora-
tion, flotation and flocculation–coagulation are used to remove of
heavy metals [4], but the traditional techniques for the removal of
metal ions from aqueous effluents have their own drawbacks, such
as secondary pollution of deposition, inconvenient operation, high
cost, difficulty of recycling metal ions and so on [5].

Membrane processes provide a viable alternative for heavy
metal recovery, as they can achieve high permeate fluxes and high
rejection coefficients with low energy costs and under mild oper-
ational conditions [6]. As for the membrane cut-off to be used to
remove metal ions, nanofiltration or reverse osmosis membranes
should be employed, but a very high transmembrane pressure is
required, rendering the process very expensive [7].

Microfiltration (MF) or traditional ultrafiltration (UF) are usu-
ally limited to the separation of molecules with high molecular
weights and are not sufficient to retain all the contaminants [8]. A
new and alternative approach combines several of these processes
that involve binding the metals firstly to a special bonding agent
(hybrid processing) [9]. Micellar-enhanced ultrafiltration (MEUF)
is the one of the alternatives for the conventional metal removal
technologies [10]. MEUF involves the addition of a surfactant above
the critical micellar concentration (CMC) in order to entrap ionic
solutes in an aqueous stream [11]. The increased hydrodynamic size

of the solutes enables their rejection by ultrafiltration membranes
with a cut-off in the range of 10–30 kDa [12]. The advantages of
this method are the high removal efficiency, low energy consump-
tion and small space requirement due to its high packing density
[13].
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Nomenclature

Symbol
R filtration efficiency
Cp concentration of Zn2+ (mg/L) in the feed solution

(mM)
Cf concentration of Zn2+ in the permeate (mg/L)
Pi inlet pressure (bar)
Po outlet pressure (bar)
Pp permeate pressure (bar)
Q permeate volume (m3)
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A area of membrane (m2)
Jp permeation flux (lit/m2 min)

Most of the previous researches on MEUF usually involve the use
f one-factor-at-a-time experimental approach which is not only
ime consuming and also excessive in cost. Also, use of conven-
ional methods of experimentation neglect the effect of interaction
etween factors and leading to low efficiency in process opti-
ization. The application of statistical experimental design and

eural network for membrane preparation seems to be the best
ethodology for MEUF process control and optimization [14]. Fac-

orial design and response surface methodology (RSM) analysis are
mportant tools to determine the optimal process conditions [15].
n many experimental settings, it is not desirable or feasible to
ssess all factors and their joint effects; thus, it is only the dominant
actors that need to be or can be identified.

. Theory

.1. Experimental design

In this study, a two-level fractional factorial design was
mployed. The 2k factorial design is particularly useful in the
arly stages of experimental work when many factors are likely
o be investigated. As the number of factors increase in 2k fac-
orial design, the numbers of required runs rapidly outgrow. If

he experimenter can reasonably assume that certain high-order
nteractions are negligible, only a fraction of the complete factorial
xperiment is adequate. A major use of fractional factorial design
s in screening experiments. Fractional factorial designs can often
dentify which factors are significant by running only a fraction

Fig. 1. A typical neural network archit
ous Materials 187 (2011) 67–74

(subset) of a full factorial experiment. However, there will be alias-
ing of effects in a fractional factorial design, which may lead to
some ambiguities in interpreting the results of a designed exper-
iment. One method for de-aliasing low-order effects is to run a
follow-up experiment using the foldover approach. The foldover
approach reverses the signs of one or more of the factors (columns)
of the initial design to produce a follow-up design of equal size
[16,17].

2.2. Artificial neural networks (ANNs)

A linear model is not suitable to constitute a satisfying rela-
tionship among the input variables for an MEUF process. The
ANN approach seems to be completely suitable to the prob-
lems where the relations between variables are not linear and
complex [18,19]. An ANN is a massively parallel distributed pro-
cessor that has a natural propensity for storing experimental
knowledge and making it available [20]. In this work, a mul-
tilayer neural network has been used, since it is effective in
finding complex non-linear relationships. It has been reported
that multilayer ANN models with only single hidden layer are
universal approximations [21]. Hence, a three-layer feed for-
ward neural network and the logsig processing function have
been used. Preliminary numerical experiments did not show
any advantage of double hidden layer network over a single
hidden layer network. The results suggested that five neu-
rons in the hidden layer were optimum and therefore it was
selected to train the networks. The network was trained using
Lavenberg–Marquardt (LM) algorithm. Typical network architec-
ture is shown in Fig. 1.

The inputs to a neuron include its bias and the sum of its
weighted input. The output of a neuron depends on the neuron’s
inputs and on its transfer function. The indices j, k, and l refer
to the input signals (j = 1, . . ., m) in the input layer, the neurons
(k = 1, . . ., p) in the hidden layer, and the neuron (l = 1, . . ., q) in the
output layer, respectively. There were five neurons (m = 5) in the
input layer, five neurons (p = 5) in the hidden layer, and one neuron
(q = 1) in the output layer. The transfer function, ϕ(�k) in the hidden
layer was a hyperbolic tangent (Eq. (4)) and a linear function was

used in the output layer (Eq. (6)). The nonlinear hyperbolic tangent
function can be calculated as follows:

yk = ϕ(�k) = 1 − exp (�k)
1 + exp (�k)

(1)

ecture for seven input variables.
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Table 1
Factors and levels for foldover fractional factorial design.

Factors Levels

−1 0 1

(A) Transmembrane pressure (bar) 1 2 3
(B) Solution pH 2 7 12
(C) Feed SDS concentration (mM) 2 4 6
(D) Surfactant to metal molar ratio (S/M) 5 7.5 10
ig. 2. MEUF experimental setup: (1) feed reservoir with stirrer, (2) bypass line, (3
odule, (7) pressure control valve, (8) permeate stream and (9) retentate stream.

ith �k being computed as

k = bk +
m∑

j=1

wkjxj (2)

here yk is the output of the hidden layer, ϕ(�k) is the transfer
unction associated with the neuron k in the hidden layer, �k is
he sum of weighted input of neuron k, bk is the bias, and xj is
he input signal. Use of bias bk has the effect of applying an affine
ransformation in the model. A linear function can be calculated as
ollows:

l = ϕ(�l) = bl +
p∑

k=1

wlkyk (3)

here yl is the output of the output layer, ϕ(�l) is the transfer
unction associated with neuron l in the output layer, yk is the
nput to the neuron l, �l is the sum of weighted input of neuron
, bl is the bias, and wlk is the weight connection of neuron k and
euron l.

In the present study, Micellar-enhanced ultrafiltration (MEUF)
as used to remove Zn2+ from synthetic wastewater by using
he regenerated cellulose spiral-wound ultrafiltration membrane.
n order to achieve to the purpose of determination of all of the
nfluential factors, two-factor interactions (2FI’s) and prediction
esponse variable, the fractional factorial design and ANN has been
sed.
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3. Materials and methods

All chemicals involved in the experiments were of ana-
lytical reagent grade. The two surfactants used were sodium
dodecyl sulfate (SDS) (>99% pure) and nonionic surfactant Poly-
oxyethyleneglycol dodecyl ether (Brij-35) were purchased from
Merck Company. Zinc ions were from zinc chloride (ZnCl2) and
other inorganic chemicals: (HCl, NaOH and NaCl) were all supplied
by PANREAC, at analytical reagent grade. In this study, ethylenedi-
aminetetraacetic acid (EDTA) as a ligand with a molecular weight
of 372.24 was obtained from Merck Company. Distilled water was

used in preparing all solutions. Distilled water produced by a water
purification system (Labconco, Iran) was used in all experiments.

The ultrafiltration experiments were carried out in a cross-flow
ultrafiltration unit. An UF spiral-wound of Amicon regenerated cel-
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Table 2
Design layout and experimental results of 27−4

III fractional factorial design.

Factor input variables Response variables

Std. Run Block P (bar) pH CSDS (mM) S/M L/M CNaCl CBrij-35/CSDS Permeate flux Rejection

1 5 1 1 2 2 10 1 50 0 1.45 44.02
2 8 1 3 2 2 5 0 50 0.5 4.52 69.86
3 10 1 1 12 2 5 1 0 0.5 0.94 92.52
4 1 1 3 12 2 10 0 0 0 4.19 96.09
5 2 1 1 2 6 10 0 0 0.5 1.44 94.2
6 11 1 3 2 6 5 1 0 0 3.05 83.49
7 9 1 1 12 6 5 0 50 0 1.92 97.94
8 7 1 3 12 6 10 1 50 0.5 2.68 90.4
9 4 1 2 7 4 7.5 0.5 25 0.25 2.46 98.75

10 6 1 2 7 4 7.5 0.5 25 0.25 2.61 96.45
11 3 1 2 7 4 7.5 0.5 25 0.25 2.52 92.14

Table 3
Design layout and experimental results of 27−4

III foldover fractional factorial design.

Factor input variables Response variables

Std. Run Block P (bar) pH CSDS (mM) S/M L/M CNaCl CBrij-35/CSDS Permeate flux Rejection

12 21 2 3 12 6 5 0 0 0.5 3.18 94.2
13 20 2 1 12 6 10 1 0 0 1.83 86.67
14 13 2 3 2 6 10 0 50 0 3.66 85.29
15 12 2 1 2 6 5 1 50 0.5 2.31 66.78
16 17 2 3 12 2 5 1 50 0 4.36 90.74
17 18 2 1 12 2 10 0 50 0.5 1.57 87.59
18 16 2 3 2 2 10 1 0 0.5 4.93 50.83
19 15 2 1 2 2 5 0 0 0 2.11 59.46
20 14 2 2 7 4 7.5 0.5 25 0.25 2.89 97.84
21 22 2 2 7 4 7.5 0.5 25 0.25 2.54 93.32
22 19 2 2 7 4 7.5 0.5 25 0.25 2.4 96.65

Table 4
ANOVA for selected factorial model (response: permeate flux).

Source Sum of squares df Mean square F value Prob > F

Block 0.727272727 1 0.727272727
Model 22.493725 4 5.62343125 105.6801185 <0.0001 Significant
Curvature 0.155461364 1 0.155461364 2.92155707 0.1080 Not significant
Residual 0.798177273 15 0.053211818
Lack of fit 0.659377273 11 0.059943388 1.727475171 0.3158 Not significant

l
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T
A

Pure error 0.1388 4 0.0347
Cor. total 24.17463636 21

ulose (PL series, Millipore) with an effective area of 0.5 m2 was
sed. The membrane cut-off was 20 kDa. The aqueous mixture was
tirred at a constant speed of 300 rpm. After being fully mixed, the
olution was fed into the membrane module in continuous and

ross-flow mode of ultrafiltration by centrifugal pump. The tem-
erature was kept at 25 ± 2 ◦C in all experiment. A schematic of the
EUF is shown in Fig. 2.
After each run, the membrane was thoroughly washed by NaOH,

Cl and distilled water for at least 15 min and at a pressure of 4 bar.

able 5
NOVA for selected factorial model (response: rejection rate).

Source Sum of squares df Mean square

Block 98.24182273 1 98.24182273
Model 4108.500575 8 513.5625719
Curvature 1011.936594 1 1011.936594
Residual 171.9016856 11 15.62742596
Lack of fit 138.4038189 7 19.77197413
Pure error 33.49786667 4 8.374466667
Cor. total 5390.580677 21
R-squared 0.96
Adj R-squared 0.95
Adeq precision 28.99

The membrane permeability was checked to ensure that the per-
meability remains almost constant between successive runs. After
each step in the cleaning procedure, distillated water was circu-
lated at 3 bar and room temperature, until the pH of the permeate

flux became neutral. Before each run, ultrapure water was filtered
in order to determine the permeability and to check the membrane.

CMC of SDS and Brij-35 were determined 8.15 mM and 0.36 mM
using the conductivity meter and surface tension method, respec-
tively.

F value Prob > F

32.86290225 <0.0001 Significant
64.75388821 <0.0001 Significant

2.360983084 0.2123 Not significant

R-squared 0.78
Adj R-squared 0.63
Adeq precision 7.86
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Internally Studentized Residuals

Fig. 4. Normal probability plot of residu

To evaluate the filtration efficiency in removal of chromate and
itrate from the feed solution, the following equation was used:

= 1 − Cp

Cf
(4)

f is the concentration of Zn2+ (mg/L) in the feed solution; Cp (mg/L)
s the concentration of Zn2+ in the permeate (mg/L).

TMP is the transmembrane pressure which can be calculated by
he following equation:

MP = 1
2 (Pi + Po) − Pp (5)

here Pi, Po and Pp are inlet, outlet and permeate pressures, respec-
ively.

Table 1 presents the variables of interest and their real values
t the levels set in the design. Each factor at two levels (high, +1
nd low, −1 levels), the center points (coded level 0), which is the
idpoint between the high and low levels, is repeated thrice.
The exploration of the experimental domain is started with
fractional factorial design, consisting of 8 experiments, whose
xtreme values are reported in Table 2. Three replicates of the
entral experiment were performed along the fractional factorial
esign in order to check the analysis repeatability and to estimate
he experimental error.
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permeate flux (a) and rejection rate (b).

This design is a 1/16th fraction, so every effect will be aliased
with 15 other effects, most of which are ignored by default to avoid
unnecessary screen clutter. The output indicates that each main
effect will be confounded with three two-factor interactions. The
aliases structure for 27−4

III design indicates as below:

[A] = A + BD + CE + FG
[B] = B + AD + CF + EG
[C] = C + AE + BF + DG
[D] = D + AB + CG + EF
[E] = E + AC + BG + DF
[F] = F + BC + AG + DE
[G] = G + CD + BE + AF

We recognize out that all the main effects in this design are
confounded with two-factor interactions. Maybe one of those con-
founded interactions is actually what is important. You must run at
least one more experiment to clear this up. To untangle the main
effects from the interactions in its initial resolution III design, can
run a “foldover,” which requires a reversal in all of the signs on the

original eight runs [16]. Combining both blocks of runs produces a
resolution IV design in which all of the main effects will be free and
clear of two-factor interactions (2FI’s). However, all the 2FI’s remain
confounded with each other [17]. Data set of fractional factorial
with foldover experimental design used, reported in Table 3.
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Fig. 6. Network model with trainin

. Result and discussion

.1. Half-normal probability plot

Quantitatively, the estimated effects of a given main effect
r interaction and its rank relative to other main effects and
nteractions is given via least squares estimation (that is, form-
ng effect estimates that minimize the sum of the squared
ifferences between raw data and the fitted values from such
stimates). Having such estimates in hand, one could then con-
truct a list of the main effects and interactions ordered by the
ffect magnitude. The half-normal probability plot is a graphi-
al tool that uses these ordered estimated effects to help assess
hich factors are important and which are unimportant. The half-
ormal probability plot of the effects for responses data set is as

ollows:
Fig. 3 is a normal probability plot of the effects. All the

ffects that lie along the line were negligible, whereas larger
nes are far from the line. Hence, the main effects includ-

ng the transmembrane tressure (A), solution pH (B) and feed
DS concentration (C) and AC as the interaction effect signif-
cantly influenced the permeate flux, whereas the solution pH
B), feed SDS concentration (C), the interaction effect between
he transmembrane tressure and the Brij35/SDS molar ratio (AG),
idation, test and all prediction set.

Ligand–zinc ratios (E) and the interaction between the trans-
membrane pressure and the electrolyte concentration (AF) were
significant for rejection responses within the levels and conditions
tested.

The main effects including the Brij35/SDS molar ratio (G) and
the electrolyte concentration (F) were not a significant term, but
to present a hierarchic model they were included in the model.
Model hierarchy maintains the relationships between the main and
interaction effects.

4.2. Data analysis

The data analysis was performed using Design-Expert Version
8.0.4 statistical software. The fitted models were assessed with
the coefficient of determination, R2. A concern with this statistic
is that it always increases as terms are added to the model, even
though the added terms are often not significant. Consequently,
this statistic is usually smaller for the refined model in compari-

son with corresponding full model. To negate this drawback, the
adjusted coefficient of determination, R2-Adj; is used. This statistic
is adjusted to the size of the model, more specifically, the number
of factors. The addition of nonsignificant terms to the model can
usually decrease the R2 Adj: value [22].
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(a) permeate flux response and (b) rejection rate responses using ANN.
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Table 6
ARE, AARE and SD for permeate flux and rejection which modeled by ANN.

T
A

Fig. 7. Correlation between experimental and predicted values of

.2.1. ANOVA analysis
In order to ensure a good model, test for significance of the

egression model, test for significance on individual model coef-
cients and test for lack-of-fit must be performed. An ANOVA table

s commonly used to summarize the tests that were performed.
able 4 shows the ANOVA table for rejection rate response.

The R-squared calculated is 0.96, reasonably close to 1, which
s acceptable. It implies that about 96% of the variability in the
ata is explained by the model. Adequate precision compares the
ange of the predicted values at the design points to the aver-
ge prediction error. The ratios greater than 4 indicate adequate
odel discrimination. In this case, the value is well above 4. The

ack-of-fit P value of 0.3158 showed that the lack of fit was not
mportant relative to the pure error. The lack-of-fit can also be
aid to be insignificant. This is desirable as we want a model that
ts.

The same procedure is applied on the other response variable,
ejection rate and the resulting ANOVA table is shown in Table 5.
he R-squared for rejection rate is 0.78, close to 1, which is desir-
ble. The adequate precision value is well above 5.

Also the F-statistics (P-value > 0.05) for the rejection response
ack-of-fit indicated that there was an adequate goodness-of-fit.

As an additional tool to check the adequacy of the final model,
he normal probability plot of the studentized residuals is illus-
rated in Fig. 4. The points on this plot lie reasonably close to a
traight line, confirming that the errors were normally distributed
ith mean zero and constant. The curvature P-value < 0.0001 indi-

ated that there is a significant curvature (as measured by the
ifference between the average of the center points and the aver-
ge of the factorial points) in the design space. As a result, a linear
odel along with the interaction terms that gave a twisted plane
as not adequate to explain the response.
Also plots of the residuals in Fig. 5 revealed that they have
o obvious pattern and unusual structure. They also show equal
catter above and below the x-axis. This implies that the model
roposed is adequate and there is no reason to suspect any viola-
ion.

able 7
comparison between the present work and the other methods.

Type of process Method Responses variab

Milk ultrafiltration ANN Permeate flux& t
Copper removal by MEUF RSM Rejection coeffici
Cross flow milk ultrafiltration Fuzzy Permeate flux& t
Present work ANN Permeate flux & t
Method % ARE %AARE %SD

Permeate flux ANN −0.12519 0.229844 0.498206
Rejection (R %) ANN −0.00055 0.017281 0.026327

4.3. Artificial neural networks

Fig. 6 shows the regression plots for the output with respect
to training, validation, and test data. The output tracks the targets
very well, and the R-value is over 0.999. In this case, the network
response is satisfactory.

Fig. 7 represents comparison between the predicted data by
ANN model and the experimental data which have not been used
in training of the ANN (1/3 remaining data). As it can be seen from
Fig. 7 the ANN provides results very close to experimental measure-
ments. The predictions which match measured values should fall
on the diagonal line. Almost all data fall on this line, which confirms
the accuracy of the ANN model.

Table 6 reveals average relative error (ARE), absolute average
relative error (AARE) and standard deviation (SD) for the Zn2+ rejec-
tion percentage and the permeate flux, respectively. ARE, AARE and
SD are defined as below:

ARE = 1
N

N∑
i=1

(
Xexperimental(i) − Xcaculated(i)

Xexp erimental(i)

)
(6)

AARE = 1
N

N∑
i=1

(∣∣∣∣Xexp erimental(i) − Xcaculated(i)

Xexp erimental(i)

∣∣∣∣
)

(7)

√√√ N∑(∣∣ ∣∣ )2
SD = √ 1
N − 1

i=1

∣∣Xexp erimental(i) − Xcaculated(i)

Xexp erimental(i)

∣∣ − AARE (8)

Table 7 summarizes a comparison between the present work
and the other methods given in the published earlier articles for

les Statistical index Ref.

he solutes rejection Average errors < 1% [23]
ent R2 = 79.03% [24]
he components rejection – [25]
he rejection rate R2 > 92%
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valuation membrane performance. However, in most of them, it
an be said that the empirical models developed were reasonably
ccurate. In present work, a multilayer neural network has been
sed, since it is effective in finding complex non-linear relation-
hips for zinc removal using MEUF process according to statistical
nalysis.

. Conclusions

The present study shows that experimental design and artificial
eural network model can be used for the modeling of zinc removal
sing MEUF process. ANOVA analysis indicated that there is signifi-
ant curvature in the design space. As a result, a linear model along
ith the interaction terms that gave a twisted plane was not ade-

uate to explain the responses. So, a multilayer neural network has
een used, as it is effective to find complex non-linear relationships.
hese mathematical models are found to be reliable and predic-
ive tools with an excellent accuracy with AARE ±0.229%, ±0.017%,
n comparison with experimental values for permeate flux and
ejection, respectively. It was observed that there is an acceptable
greement between ANN model results with experimental data.
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